
Drive Predictability with Visual Studio
Team System 2008
White Paper

May 2008

For the latest information, please see www.microsoft.com/teamsystem

http://www.microsoft.com/teamsystem

This is a preliminary document and may be changed substantially
prior to final commercial release of the software described herein.

The information contained in this document represents the current
view of Microsoft Corporation on the issues discussed as of the date
of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT
MAKES NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of
the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks,
copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written
license agreement from Microsoft, the furnishing of this document
does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, Visual Studio, and SharePoint are trademarks of the
Microsoft group of companies

All other trademarks are property of their respective owner

Contents .. 3

Introduction .. 1

Process .. 2

Resources ... 4

Avoiding Surprises... 6

Estimating .. 9

Conclusion ... 10

About the Author .. 11

CONTENTS

 White Paper: Drive Predictability with Visual Studio Team System 2008 1

Predictability provides advantages in all areas of business to the benefit of

everyone. Organizations rarely thrive in completely chaotic environments.

This is especially true when dealing with software development. Imagine if

you will, a new developer being hired for a project and not knowing what they

were supposed to do, how they were supposed to do it, and having no clue

where to get this information. The solution to this problem is usually, “sit with

another developer for a few days to learn the ropes.” This situation is less

than optimal.

Or how about trying to apply or request additional resources for a project.

Just getting additional resources isn’t going to help a project if you can’t

figure out where to apply the resource or maybe the expertise the resource

requires. By understanding current situations as well as any developing

trends you can plan ahead to avoid potential problems.

Avoiding surprises is a key benefit of predictability. On numerous occasions

development teams will work through the night going into the last few weeks

before delivery because they were not aware of how much work was left to

do. Typically it takes a heroic effort to complete the software on time—and

quality almost always suffers. Microsoft
®
 Visual Studio

®
 Team System 2008

provides the ability to help foster collaboration between stakeholders also

helps avoid surprises. By using Team System as a hub for communication,

everyone is aware of the issues.

Team System helps drive success by enabling consistent and predictable

processes. It helps expose trends on development projects, which enables

teams to focus resources and actively (and preemptively) manage risks

which may otherwise not be apparent. Without the ability to step back and

clearly and easily view project details, many issues may go unnoticed—but

not with Team System. Injecting predictability into the software development

process leads to a lower cost of software development and a higher return on

investment.

INTRODUCTION

 White Paper: Drive Predictability with Visual Studio Team System 2008 2

Many companies hear the word process and automatically assume a

monolithic structure that everyone has to follow down to the last letter. And in

many ways this is one issue that has caused many more projects to fail than

would have otherwise. You might think this is a strange view until you

consider that somewhere along the way “process” became associated with

lots and lots of paperwork—almost as if the software was an afterthought.

There is paperwork to tell you how to do your job, what the steps of the

software development life cycle are, what your responsibilities are, who you

report to, what you’re responsible for and lastly, keeping track of every last

thing you do and how long it took you to do it.

As mentioned previously, a new hire is a big deal. Companies can spend a

lot of time and money getting new hires up to speed and sometimes it takes

weeks before they do anything productive. Team System helps you solve

these problems through the use of process templates. Simply put, a process

template contains documentation which is relevant for the development

team. By default, a process template contains a list of roles, responsibilities,

document templates, and a configured Microsoft
®
 SharePoint

®
 site, known as

the Team Portal, and standard reports. These templates can be customized

by adding in other documents, links, and custom configurations. When a

developer comes in and says, “What am I supposed to do?” the Team Portal

serves as a single location that you can point to which tells the developer

everything they need to know.

Beyond that, your development process is integrated into the daily activities

of the development team through the process template so it becomes

ingrained. Work items (project tracking forms which record information) are

integrated as part of the process template and contain the information

necessary for the developer to work, communicate, and collaborate with

others on the development team. You can customize work items to record

the information you need to better help you refine your own process.

Many project teams work differently, even in the same organization. Teams

might use a slightly different process to develop software from project to

project. With Team System, everyone doesn’t have to use exactly the same

process—but everyone can use the same tools. Team members can

customize each Team System project to use only what the project team feels

is necessary. This saves a lot of needless work and retraining as developers

move from project to project.

Team System includes two built-in process templates to help teams get

started. These are the Microsoft Solutions Framework (MSF) for CMMI

Process Improvement and MSF for Agile Software Development. Either

template can be useful for teams with no, or limited, process experience. For

more mature teams, the process templates provide a platform for quickly

customizing a process for the team’s particular needs. I’ll explain these

templates in the next few sections.

PROCESS

 White Paper: Drive Predictability with Visual Studio Team System 2008 3

MSF for CMMI Process Improvement 4.2

The CMMI/PI template is certified by the Software Engineering Institute—

Capability Maturity Model (SEI-CMM) as providing the necessary processes

to meet the CMMI Level 3 rating. Essentially this means that if you use the

Microsoft Solutions Framework for CMMI Process, combined with the

process template, you will have a standard, repeatable process for

performing software development.

MSF for Agile Software Development 4.2

The agile template is a lightweight template which has simplified states and

work items compared to the CMMI/PI template. The terminology matches

those used by agile teams as well as the process used by those teams. This

process stresses unit testing, frequent builds, and short iterations—all

hallmarks of an agile process. Using the agile process enables your team to

react to change more quickly and focuses on quality first.

Differences between the Agile and CMMI Templates

The CMMI/PI template provides several features which the agile template

does not. It provides for a “proposed” state which is the initial state for all new

work items. It also provides some additional reports over the agile template.

Finally, the CMMI/PI template features a Change Request work item type,

which enables you to use Team System as a change management tool.

For any given work item there are some differences in the information

captured by each template. Also, the CMMI/PI template uses a

Requirements work item instead of a Scenario work item for capturing

requirements since agile development uses User Stories rather than the

more detailed documentation typically found in a formal project. With Team

System, however, no matter which template you use, the tool works the

same.

 White Paper: Drive Predictability with Visual Studio Team System 2008 4

Have you ever felt that you are getting into trouble on a project? Maybe

things aren’t getting done as quickly as they should or the customers are

dissatisfied with the software they are receiving. Lots of problems can

materialize during the software development process. You might solve these

problems by getting additional resources. But what type of resource do you

ask for? Do you need more developers or more testers? How about better

user participation or maybe a faster build machine? Maybe you need an

independent developer to come and audit your team’s code. Many teams

have resource problems and don’t have a good way to solve them. Team

System can help you predict where and when you’ll need resources.

This is where the reports in Team System really have a positive impact on

the development process. Maybe you have a situation where your

developers write code quickly but Quality Assurance cannot review the code

fast enough. How could you know this? Team System has you covered—you

simply run the Remaining Work report and you get an instant view of how

much work is currently under development, how much is ready for testing,

and how much has completed testing (Figure 1).

Figure 1. Remaining Work report

This report helps you determine if you should get more developers or more

testers. If the number of items remaining to complete is not going down (red

area in Figure 1), you need more developers than testers. But if the number

of items remaining is going down and the number of items to test is going up

RESOURCES

 White Paper: Drive Predictability with Visual Studio Team System 2008 5

(as in Figure 1—the yellow area), you need more testers. This is a simple

and straightforward example of how the reporting in Team System helps

teams do better.

How about a more difficult situation? What if requirements are not being

completed fast enough to give the development team enough work? Getting

users’ time to work with a development team can be difficult in the best of

circumstances, but trying to prove that they are the bottleneck is almost

impossible. Using a combination of reports in Team System you can show

not only how many requirements are being completed but the number of

overall requirements for the project and what stage they are in. These simple

metrics can provide definitive proof of a need—without teams having to do

any intensive work to gather this information.

 White Paper: Drive Predictability with Visual Studio Team System 2008 6

Team System offers some unique, pre-built report tools that will help teams

avoid many of the typical surprises that historically derail a project. Many

teams are often “caught off guard” by the amount of work left to finish as the

release date approaches. Budgets are cut, release dates are advanced,

scope increases, developers underestimated or other things occur which

causes last minute scrambling. In fact, most development teams work nights

and weekends getting the software completed just before the release.

Typically, the team delivers the project with the caveat that the team will “fix it

in maintenance”. In general, teams should not be caught off guard because

there are indicators along the way that tell when something is not right. Team

System also helps by providing a collaborative environment which helps

eliminate the barriers to effective problem solving.

This type of last minute heroics approach to software development leads to

dissatisfied customers, upset developers, and poor quality software. This has

also led to one of the more intriguing “rules” in software development—75%

of the money for development is spent on maintenance (keeping the

business running) versus 25% on new development. Ideally you want the

opposite situation—75% on new development versus 25% on maintenance.

The “fix it in maintenance” approach is one of the reasons that this imbalance

exists—and it is fixable.

Another common software development problem is scope creep. We’ve all

experienced it or watched it cause a project to crash and burn. Many teams

may not have even realized that increasing the scope of the project caused

the problems they experienced. And even if they did, they couldn’t quantify it.

Team System includes an Unplanned Work report that enables users to see

what the scope creep is and what its’ impact is on the release schedule

(Figure 2).

AVOIDING SURPRISES

 White Paper: Drive Predictability with Visual Studio Team System 2008 7

Figure 2. Unplanned Work report

With this information, teams can discuss the issue with the users to minimize

and better manage scope creep.

Understanding the impact of changes on a development schedule is critical

but typically there isn’t enough information to get a good handle on the

problem. But what if you could get enough information to understand an

impact without taking days to study the problem because you already had the

metrics and just had to change the extrapolation a little bit? A case in point is

the Unplanned Work report mentioned above. Another case is the Remaining

Work report, which you can use to tell you how much work remains, but it

also lets you see trends and perform extrapolations. This can also help you

inform management of the impacts of their decisions.

Team System also features the Quality Indicators report, which provides

information related to the quality of the code. Users don’t tend to like code

released with a lot of bugs or other issues. By implementing unit testing and

gathering metrics from the code you can provide detailed information such as

the number of bugs remaining, the number of tests which failed (and

passed), code coverage rates, and other information (Figure 3).

 White Paper: Drive Predictability with Visual Studio Team System 2008 8

Figure 3 – Quality Indicators report

Figure 3 shows a disturbing trend: the number of passing tests is

decreasing, the code coverage is decreasing, and the code churn is

increasing. This indicates that the bugs being fixed are larger than maybe the

team thought they were and that they are spending more time to close the

bugs. While this isn’t definitively pointing to a problem, it does indicate that

there may be something wrong. It lets a team realize that, based on the

information they have, they have cause for concern—no one will be surprised

when it turns out a larger problem has been uncovered.

This report helps you get a handle on what’s going to happen come release

day and afterwards. You’ll be able to judge just how much of your budget is

going to go to maintenance and how much will be available for new work. It

also lets you set customers expectations for the quality and completeness of

the application in the initial release.

 White Paper: Drive Predictability with Visual Studio Team System 2008 9

By its’ very nature, estimating software projects is hard. I mean really hard.

And there are many ways to estimate software projects. Software estimation

experts recommend using a variety of techniques on a project and to look for

a “convergence” between the estimates to determine if the estimates are

good. One of the best techniques for estimating software projects is to use

historical data. According to Steve McConnell in his book, Software

Estimation: Demystifying the Black Art (Microsoft Press 2006), projects

that use historical estimation tend not to have overruns. That’s a pretty

powerful reason to use historical information. But most organizations don’t

effectively maintain a history of effort.

Using Team System, it requires little effort to record the information needed

to estimate future projects based on past results. Team System work items

can record information such as the number of lines of code, length of time to

complete, and other useful information. In this manner, organizations can use

their own data for estimating future tasks. Using historical information also

factors in political realities and organization-specific conditions. The more

projects you do, the better your ability to estimate becomes. By extracting

data from the Team System data warehouse and analyzing it, an

organization can begin to improve its estimating ability and better control

cost.

ESTIMATING

 White Paper: Drive Predictability with Visual Studio Team System 2008 10

In Team System, process never gets in the way of developers doing what

they need to do—build software. Team System never gets in the way

because it isn’t onerous; it adds a few simple steps that end up saving time in

the long run. And a simple, easy to use and well followed process leads to

the one thing that all companies seek—process improvement. Until you have

a process you can’t improve the process. Until your development teams use

the process you can’t know what needs to be improved. Team System gets

you on the path to creating better processes with less work because it works

the way you do.

CONCLUSION

 White Paper: Drive Predictability with Visual Studio Team System 2008 11

Jeff Levinson is the Application Lifecycle Management Practice Lead for

Northwest Cadence which specializes in Team System and process

improvement. You can reach Jeff at Jeff.Levinson@nwcadence.com.

This white paper was developed in partnership with A23 Consulting.

ABOUT THE AUTHOR

mailto:Jeff.Levinson@nwcadence.com

